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BACT Program Overview
• Benchmark Aeroelastic Models Program

– study physics of aeroelastic phenomena
» classical transonic flutter “bucket”
» shock induced instabilities
» dynamic vortex-structure interaction

– data to validate steady and unsteady aero codes
– active control of aeroelastic systems

• Benchmark Active Control Technology (BACT)
– high quality unsteady aero data near flutter 
– active flutter suppression

» innovative control concepts - spoilers and multiple effectors
» innovative design methods - H∞, µ-synthesis, neural nets

– validate on-line controller performance evaluation tool
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BACT Project Team
• Diverse Interdisciplinary Team

– SD, FDCD, Guest Investigators (LaRC, ARC, MDA, Orbital Research)
– Aerodynamics, Aeroelasticity, Dynamics and Control, Fabrication and 

Calibration, Parameter Identification, Information Systems

• Core Team
– Rob Scott (Team Leader)
– Robert Bennett
– Sheri Hoadley
– Robert Sleeper
– Marty Waszak
– Carol Wieseman
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BACT System Overview
• Pitch and Plunge Apparatus (PAPA)

– 2-DOF :  pitch and plunge
– 5-6 deg max. rotation
– 1.5 inch max. deflection

• Wind-Tunnel Model
– rigid NACA 0012 airfoil
– AR = 2   (c = 16 in.,  b = 32 in.)

• Control Surfaces
– span = 0.3b, centered at 0.6b
– upper and lower spoilers

» chord = 0.15c
» 45 deg max. deflection

– trailing edge flap surface
» chord = 0.25c

» ±15 deg max. deflection
– hydraulic actuators

• Instrumentation
– 4 accelerometers in corners of wing
– pitch angle sensors
– 70 pressure transducers

» 58 @ 0.6b  (incl. control surfaces)
» 17 @ 0.4b

– add’l transducers on splitter plate

– accels and strain gauges on PAPA
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BACT Project Chronology

Tunnel
Entry

Data Collected Key
Outcome

October
1993

• Steady Loads & Pressures

• Unsteady Loads & Pressures

• Flutter Boundary

• Frequency Responses

• Control Design
Model

January
1995

• SISO Flutter Suppression

• SISO CPE Validation

• Neural Network Gain Scheduler

• Adaptive Predictive Controller

• Turbulence Response

• Flutter
Suppression
with Spoilers

• Benefit of
Multivariable
Control

• Validated
SISO CPE

February
1996

• MIMO Flutter
Suppression

• Validated
MIMO CPE
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Modeling for Flutter Suppression
• Model elements

– structural dynamics
– steady and unsteady aerodynamics (including control effects)

– turbulence effects
– actuators, sensors, controller effects

• Accurately characterize dynamic response
– over flutter frequency range
– wide range of Mach and dynamic pressure
– due to spoilers (not possible with “standard” modeling method)
– characterize effects of key parameter variations

» sensitivity analysis
» uncertainty models

Turbulence

Actuators

Structure
&
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Sensors

Filters
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Delays
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Modeling Approach
• Idealized structure

– 2-DOF : pitch and plunge
– linear

• Aerodynamics
– linear
– no lag terms, c/2U

• EOM’s
– Lagrange’s equations
– Principle of virtual work
– Experimental data in numerical model
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Model Accuracy - Frequency Response

• Subcritical Condition :  M=0.77,  q=125 psf
• Trailing edge inboard acceleration (g’s)
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Modeling Summary

• Complete simulation model for control system design
– Accuracy demonstrated

– Implemented in MATLAB™/SIMULINK™

– Fully Documented

• Used in design of several control laws
– Classical

– H∞ and µ-Synthesis

– Generalized Predictive Control

– Neural Net Control

• Multiple Internal and External Customers
– Dynamics and Control Branch, Aeroelasticity Branch

– McDonnell-Douglas Aerospace

– VPI, AFIT

– U of Minnesota, Duke, ODU, U of Missouri, U of Naples
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Flutter Suppression Control Laws
• Design Objectives

– Stability Over Entire Operating Range
– Maintain Stability Subject to Modeling Errors
– Acceptable Control Activity

• Traditionally Designed SISO Controllers
– Demonstrate Flutter Suppression Using Spoilers
– Develop Performance Specifications
– Coupled SISO Controllers

• Robust MIMO Controllers
– Demonstrate Multivariable 

Flutter Suppression
– Evaluate Enhanced 

Robustness Properties
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SISO Controller Summary
• Stabilized transonic flutter instability
• Operated over wide range of conditions
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SISO Controller Performance Summary
• Reduced acceleration levels over entire operating range

– Gust Load Alleviation for open-loop stable conditions

– Flutter Suppression when open-loop unstable

• Enhanced performance with coupled controllers
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MIMO Controller Design Methods
• Robustness

– Maintain Stability and Performance Subject to Model Variation
– Variations Include

» Operating Condition
» Model Error/Uncertainty

• H∞ Control
– Robust Stability
– Nominal Performance

• µ-Synthesis
– Robust Stability
– Robust Performance
– Structured Uncertainty
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Basis for MIMO Design Methods
• Stability margins characterized by generalized Nyquist diagram
• Uncertainty characterized by “fuzziness” of Nyquist contour
• Select controller to maximize distance from critical point to 

Nyquist contour
• Satisfy performance constraints

Critical
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MIMO Controller Summary

Comparison of Relative Robustness
(Dynamic Pressure = 185 psf)
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• Nominal performance similar 
for all MIMO controllers

– similar performance objectives
– actuator deadzone

• Better robustness for                  
µ-Synthesis controllers

– larger stability margins than 
classical designs

– more uniform margins 
(i.e., at plant input and output)
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Controller Performance Evaluation
• On-line, Near Real Time Stability Assessment

– Open-Loop:  Determines if controller will destabilize system

– Closed-Loop:  Determines stability margin for controller

• Greatly Enhances Safety of Active Control Testing
– Less chance of damage to model and wind-tunnel

– Less chance of equipment failure due to “heavy wear”
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Nyquist Plot Comparison• Enhances Productivity
– Less time required to verify controller 

performance

– Reduces stress and anxiety

• Validation Process
– Design controllers to vary gain and phase

– Compare stability margins while varying 
gain & phase in various channels
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CPE Tool Validation
• Demonstrated Accuracy of SISO Margins
• Demonstrated Convervatism of MIMO Margins
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• CPE Enhances Safety and Productivity
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Key Accomplishments

Active Flutter 
Suppression
w/ Spoilers
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Technical Accomplishments
• Spoilers for Flutter Suppression

– Representative of “Innovative Control Effectors”
– Additional Design Freedom
– Enhanced Redundancy 

• Robust Multivariable Flutter Suppression
– One of the First Demonstrations
– Enhanced Performance (over SISO designs)
– Enhanced Robustness

– Identified Deficiencies in Methods
» Inability to Accomodate Practical Needs (e.g. Washout)
» Sensitivity to Performance Specifications
» Numerical Algorithms and Convergence Issues

• Validated CPE Tool for Active Control Testing
– Enhanced Productivity
– Reduced Risk of Damage to Model and/or Tunnel
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Additional Accomplishments
• Fully Documented Simulation Model

– highly valued for research and education uses
» LaRC, ARC
» McDonnell-Douglas Aerospace
» VPI, AFIT
» U of Minnesota, Duke, ODU, U of Missouri, U of Naples

– unique capability of LaRC

• Benchmark Active Control Database
– Basis for Comparing Other Innovative Control Designs
– Basis for Improving Analytical Modeling Methods

(e.g., System Identification of Uncertainty Models)

• Additional Experience/Confidence with Active Flutter Control
• Safe and Reliable Test Facility

– multiple recovery mechanisms 
(controller reversion, “snubber,” and by-pass valves)

– built and maintained in-house
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Concluding Remarks
• Effective Leveraging of LaRC’s Strengths

– Unique combination of LaRC Resources
» Multiple Disciplines:  Structures, Aerodynamics, and Controls
» TDT Wind-Tunnel and Fabrication Facilities

– Aeronautics Base Funding
» Less rigid schedule (decision points rather than milestones)
» Freedom to exploit serendipity
» Less risk averse environment

– Diverse set of products

• Example of Fundamental/Radical Technology Development
– Combines emerging technologies with unique resources/capabilities
– Exhibits significant risk but with large potential technical benefit
– Establishes a basis for more focused development

– Enhances an already strong competitive position
– Addresses an area of potentially high future demand


